Physical Modeling of Data Warehouses using UML

Sergio Luján-Mora
Juan Trujillo

DOLAP 2004

Contents

• Motivation
• UML extension mechanisms
• DW design framework
• DW physical design
• Conclusions and future work
Motivation

• Data warehouses are complex information systems
• Support:
 – OLAP
 – Data mining
 – Decision Support Systems
 – …
• Building a DW: time consuming, expensive and prone to fail

Motivation

• Partial approaches:
 – ETL processes
 – Logical and conceptual design of the DW based on the MD paradigm
 – Derive DW schema from ER schemas of the data sources
 – …
• Most of the research efforts focused on MD data models
Motivation

• Implementation decisions:
 – Storage in different disks
 – Replication
 – Vertical and horizontal partitioning
 – Influence performance and maintenance
 – …

• Solution:
 – Tackle **physical design** from early stages
 • Allows the designer to anticipate physical design decisions
 • Reduce development time and cost

• Previous work: **Data Warehouse Engineering Process**
 – Modeling language that assists an entire DW project
 – Based on standards (UML, UP, XML)
 – Represent the models at different levels of granularity (from high-level to low-level)
 – Used at different stages of the DW project
 – Used by different personal (business users, administrators, etc.)
Motivation

• This work: Physical Design of DW
 – Component and deployment diagram from UML
 – Integrated in our DWEP: maps elements from the logical level into the physical level
 – Aimed to be used by DW designers (how to build) and administrators (how to implement and maintain)
Contents

• Motivation
• **UML extension mechanisms**
 • DW design framework
 • DW physical design
 • Applying modeling schemas
 • Conclusions and future work

UML extension mechanisms

• UML is a *general purpose* visual modeling language for systems
• Extension mechanisms allow the user to tailor it to specific domains
• Mechanisms:
 – Stereotypes → New building elements
 – Tagged values → New properties
 – Constraints → New semantics
Physical Modeling of Data Warehouses using UML

UML extension mechanisms

<table>
<thead>
<tr>
<th>Icon</th>
<th>Decoration</th>
<th>Label</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact 1</td>
<td>Fact 2</td>
<td>Fact 3</td>
<td>Fact 4</td>
</tr>
</tbody>
</table>

Package stereotypes

- StarPackage (Level 1)
- FactPackage (Level 2)
- DimensionPackage (Level 2)

Class stereotypes

- Fact (Level 3)
- Dimension (Level 3)
- Base (Level 3)
Contents

• Motivation
• UML extension mechanisms
• **DW design framework**
• DW physical design
• Applying modeling schemas
• Conclusions and future work

DW diagrams

• Development of DW can be structured into an integrated framework:

 – Five stages
 – Three levels

 Fifteen diagrams

• Diagrams spread throughout the five stages and the three levels
• Each diagram uses different formalisms (class diagram, component diagram, etc.) → Several UML profiles have been proposed:
 – Multidimensional profile
 – ETL Profile
 – Data Mapping Profile
 – **Database Deployment Profile**
Physical Modeling of Data Warehouses using UML

Source (S) (OLTP, external data, ...)

Integration

Data Warehouse (DW)

Customization

Client (C) (OLAP, data mining, ...)

Conceptual

<table>
<thead>
<tr>
<th>SCS</th>
<th>DM</th>
<th>SWDS</th>
<th>DMCS</th>
<th>SCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class diagram</td>
<td>ETL Diagram</td>
<td>Data Mapping Profile</td>
<td>Standard UML</td>
<td>Class diagram</td>
</tr>
<tr>
<td>Standard UML</td>
<td>Data Mapping Profile</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical

<table>
<thead>
<tr>
<th>SL5</th>
<th>ETL Process</th>
<th>DWLS</th>
<th>Expanding Process</th>
<th>CL9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class diagram</td>
<td>ETL Process</td>
<td>Different data modeling profiles</td>
<td>Class diagram</td>
<td>Different data modeling profiles</td>
</tr>
<tr>
<td>Different data modeling profiles</td>
<td>ETL Process</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>SPS</th>
<th>Transportation Diagram</th>
<th>EMPS</th>
<th>Transportation Diagram</th>
<th>CPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. & deploy. diagrams</td>
<td>Deployment diagram</td>
<td>Comp. & deploy. diagrams</td>
<td>Deployment diagram</td>
<td>Comp. & deploy. diagrams</td>
</tr>
<tr>
<td>Database Deployment Profile</td>
<td>Database Deployment Profile</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical Modeling of Data Warehouses using UML

DW diagrams

- **Stages:**
 - Source: data sources (OLTP, external data sources, etc.)
 - Integration: mapping between source and data warehouse
 - Data Warehouse: structure of the DW
 - Customization: mapping between data warehouse and clients' structures
 - Client: structures used by the clients to access the DW (data marts, OLAP applications, etc.)
Physical Modeling of Data Warehouses using UML

DW diagrams

- For each stage, different levels:
 - Conceptual
 - Logical
 - Physical
- Remarks:
 - Every DW project does not need the fifteen diagrams
 - The different diagrams of the same DW are not independent but overlapping (UML importing mechanism)

Contents

- Motivation
- UML extension mechanisms
- DW design framework
- **DW physical design**
- Applying modeling schemas
- Conclusions and future work
Physical Modeling of Data Warehouses using UML

Source (S)
- Conceptual: SCS Class diagram, Standard UML
- Logical: SLS Class diagram, Different data modeling profiles
- Physical: SPS Comp. & deploy. diagrams, Database Deployment Profile

Integration (I)
- Conceptual: DI Class diagram, ETL Profile
- Logical: ETL Process Diagram, ETL Profile
- Physical: Transportation Diagrams, Comp. & deploy. diagrams, Database Deployment Profiles

Data Warehouse (DW)
- Conceptual: DWS Class diagram, Standard UML, Multidimensional Profile
- Logical: DWLS Class diagram, Different data modeling profiles
- Physical: Transportation Diagrams, Comp. & deploy. diagrams, Database Deployment Profiles

Customization (C)
- Conceptual: CNS Class diagram, Standard UML, Multidimensional Profile
- Logical: CLS Class diagram, Different data modeling profiles
- Physical: CPS Comp. & deploy. diagrams, Database Deployment Profile

Client (C)
- Conceptual: Client Physical Schema
- Logical: Source Physical Schema
- Physical: Data Warehouse Physical Schema

Physical Modeling of Data Warehouses using UML

DW physical design

- **UML component and deployment diagrams extended** → **Database Deployment Profile**: `<<Database>>`, `<<Tablespace>>`, `<<Table>>`, etc.

Diagrams
- Source Physical Schema
- Data Warehouse Physical Schema
- Client Physical Schema
- Integration Transportation Diagram
- Customization Transportation Diagram

Component and deployment diagram

Deployment diagram
Physical Modeling of Data Warehouses using UML

DW physical design

- Example:
 - DW with daily sales of a company that sales automobiles (cars and trucks)
 - Dimensions of analysis: automobile, customer, dealership, salesman, time
 - Two data sources:
 - Sales server: transactions and sales
 - CRM server: customers
 - Different final users' requirements:
 - MacOS and Windows
 - Web and desktop application
Physical Modeling of Data Warehouses using UML

Level 2: Star schema definition
Physical Modeling of Data Warehouses using UML

DW physical design

Data Warehouse Logical Schema: ROLAP

Source Physical Schema: deployment diagram
Physical Modeling of Data Warehouses using UML

DW physical design

Data Warehouse Physical Schema: component diagram

Physical Modeling of Data Warehouses using UML

DWPS

Data Warehouse Physical Schema: deployment diagram
Physical Modeling of Data Warehouses using UML

Data Warehouse Physical Schema: deployment diagram

Integration Transportation Diagram: deployment diagram
Physical Modeling of Data Warehouses using UML

DW physical design

Contents

- Motivation
- UML extension mechanisms
- DW diagrams
- DW engineering process
- Applying modeling schemas
- **Conclusions and future work**
Conclusions

- UML component and deployment diagrams for DW physical design
- Advantages:
 - Part of a DW Engineering Process based on the UML & UP
 - Traces a project from the conceptual to the physical level
 - Reduces development cost thanks to tackle implementation issues in early stages
 - Different levels of abstraction

Future work

- Index representation
- Formal definition with OCL
- Design guidelines
- CASE tool support with Rational Rose → Add-in
Physical Modeling of Data Warehouses using UML

Sergio Luján-Mora
Juan Trujillo

DOLAP 2004