PUBLICACIONES

Ver todos los resumenes/See all abstracts

Ver todas las publicaciones (sin resumenes)/See all publications (without abstracts)

Claves:


BLBlog
CICongreso internacional / International conference
CLCapítulo de libro / Book chapter
CNCongreso nacional / National conference
IIInforme interno / Internal report
LILibro / Book
RVRevista / Journal

URL     Documento / Document     Presentación / Slides


Año/Year 2017:

Clave: CI  Ref: REES'17
Oswaldo Moscoso-Zea, Mayra Vizcaino, Sergio Luján-Mora. Evaluation of Methods and Algorithms of Educational Data Mining. 7th Research in Engineering Education Symposium (REES 2017), p. 972-980, Bogota (Colombia), July 6-8 2017. ISBN: 978-1-5108-4941-9.

Educational data mining (EDM) is an evolving discipline that allows the creation and exploration of knowledge from academic environments by means of developing and applying data mining (DM) methods and algorithms to information stored in data repositories of higher education institutions. The results of the application of these methods and algorithms allows these institutions to better understand the way the lecturers teach, the way the students learn and the activities of organizational processes to improve decision making. This paper describes DM, EDM and the existing methods and algorithms of the discipline. Furthermore, it presents the experiments carried out for the evaluation of methods and algorithms applied to two key performance indicators in a private university: student dropout and graduation rate. Finally, it compares these methods and algorithms and suggests which has better precision in certain scenarios.
  



Ver todos los resumenes/See all abstracts

Ver todas las publicaciones (sin resumenes)/See all publications (without abstracts)



Página mantenida por Sergio Luján Mora
Última actualización: 19-Dic-2001 
página principalenviar correo